
ICASE
OPTIMAL ASSIGNMENTS IN DUAL-PROCESSOR DISTRIBUTED

SYSTEMS UNDER VARYING LOAD CONDITIONS

Shahid Bokhari

-
e

iU9U- 73 154

Report Number 79-14

July 5, 1979

INSTITUTE FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, V i rg in ia

Operated by the
n’

UNIVERSIT IES SPACE RESEARCH ASSOC I AT ION

OPTIMAL ASSIGNMENTS IN DUAL-PROCESSOR DISTRIBUTED SYSTEMS
UNDER VARYING LOAD CONDITIONS

Shahid H. Bokhari
Institute for Computer Applications in Science and Engineering

ABSTRACT

In dual-processor systems the optimal assignment of the modules of

a distributed program over the two processors may be found using a net-

work flow algorithm.

on the two processors and is not usually feasible to recompute each time
the loads change.

The optimal assignment is sensitive to the loads

We address the problem of computing all optimal assignments for all

possible load values in advance of actual execution of the distributed

program.
represented by a convex polyhedron in 3-space, each of whose faces corre-

sponds to a specific optimal assignment. It is proved that, even though
there are 2" distinct assignments of n modules over the two processors

and an infinite number of load values, the number of optimal assignments

is O(n2).

optimal assignment at a specific pair of loads in O(n log n) time is

described. An algorithm that finds the polyhedron in O(n) time is presented.

A mathematical model is developed wherein the situation is

A fast look-up technique that, given the polyhedron, finds the

7

The results presented here provide a means for adapting rapidly to
changes in the load on both machines.

.

This research was supported by NSF Grant MCS-76-11650, while the author
was at the Department of Electrical and Computer Engineering, University
of Massachusetts, Amherst, and by NASA Contract No. NAS1-141401 while
the author was resident at ICASE, NASA Langley Research Center, Hampton,
VA 23665.

- I. In t roduc t ion

.

The p o t e n t i a l f o r d i s t r i b u t e d processing e x i s t s whereve: : w-

two o r more computer systems t h a t are in te rconnec ted i n such L. ~as!-.a

t h a t a program (o r subprogram) running on one machine can invmz L

d i f f e r e n t program on another machine. Such s i t u a t i o n s exist j:

numerous i n d u s t r i a l and academic computing environments.

Given t h e p o s s i b i l i t y of execut ing t h e var ious modules rhh=

up a l a r g e program on d i f f e r e n t processors , we are n a t u r a l l y :*%%xed

i n doing t h i s i n an opt imal fashion.

execute on t h e processor t h a t is b e s t s u i t e d t o t h e s o r t of :imru:~c:Jn

t h a t is being c a r r i e d ou t by t h a t module. Modules t h a t commor.::s:~

heavi ly wi th each o the r should r e s i d e , as f a r as poss ib l e , or. :M s.me

machine. I f w e a s s o c i a t e wi th each modale i t s execut ion cos t s .u aach

of t h e a v a i l a b l e processors , and i f t he c o s t s of communicatlx ?U:**a

pairs of modules (should they not be cores ident) are a l s o si=-. :%a

t h e problem becomes one of ass igning modules t o processors .mi:? :?at

Each module should ider.L>

t h e sum of execut ion and communication c o s t s is minimized.

Stone [77al has shown t h a t t h i s problem may be solved for the

two-processor case using a network flow algorithm.

t h r e e processor case is descr ibed by Stone [77bI. Rao e t a l . ('01

desc r ibe how a memory c o n s t r a i n t on one of t h e processors eay he taken

i n t o account. Bokhari [791 has extended t h e network flow model t o

inc lude t h e p o s s i b i l i t y of reass igning modules during t h e course of

program execut ion, while tak ing t h e c o s t s of reassignment Into account.

An extension c\' t h e

-2-

Further research by Stone [78] shows how t h e assignments may be found

e f f i c i e n t l y under condi t ions of varying load on only one processor.

This research addresses t h e problem of f ind ing t h e optimal

assignments f o r dual-processor systems under varying load cond i t ions on

both processors.

t h e processors t h a t make up a d i s t r i b u t e d system are usua l ly

time-shared. I n such circumstances, t h e c o s t of running a module on a

s p e c i f i c processor depends on t h e load on t h a t processor. The optimal

assignment of modules t o processors is , theref ore , s e n s i t i v e t o t h e

load cond i t ions on t h e processors. The network flow algori thm may, of

course, be used t o f i n d t h e optimal assignment a t a s p e c i f i c p a i r of

load levels. However, i t is usua l ly not f e a s i b l e t o do t h i s i n real

t i m e because, even though t h e algori thm i s e f f i c i e n t , t h e t i m e required

t o so lve t h e assignment problem can equal o r exceed t h e t i m e required

t o run t h e program whose execution c o s t is being minimized.

I n t h e t y p i c a l i n d u s t r i a l o r academic environment,

W e p r e sen t i n t h i s paper an algori thm t h a t enables u s t o compute

e f f i c i e n t l y a l l optimal assignments f o r a l l p o s s i b l e values of load i n

advance of a c t u a l execution of t h e d i s t r i b u t e d modular program.

f a s t look-up technique t h a t f i n d s t h e optimal assignment of a l l n

modules a t s p e c i f i e d load condi t ions i n O(n log n) t i m e is a l s o

developed.

r ap id ly t o changes i n t h e load on t h e two machines.

A very

The r e s u l t s presented he re provide a means f o r adapt ing

This paper is organized as follows. I n Sect ion I1 w e show t h a t ,

assuming t h e run c o s t s of modules t o vary l i n e a r l y with t h e load on t h e

- 3-

processors , t h e c o s t of opt imal assignments a t a l l va lues of load

correspond t o a convex polyhedron i n 3-space. In Sect ion I11 we show

how a l l t h e r e l evan t information

its p r o j e c t i o n on t h e XY plane.

2 polyhedron i s proved t o be O(n)

about t h e polyhedron is contained i n

The t o t a l number of f a c e s on t h e

i n Sec t ion IV. In Sect ion V w e

develop t h e concept of c r i t i c a l load l ines-- these p e r m i t u s t o look up

t h e opt imal assignment at any va lue of load i n O(n log n) t i m e .

a lgor i thm f o r f ind ing t h e polyhedron is presented i n Sec t ion VI.

conclude wi th a d iscuss ion on implementat i on cons idera t ions and

desc r ibe some new problems generated by t h i s research.

An

W e

-4-

- 11. The Assignment Polyhedron.

I n t h i s s e c t i o n we present our assumptions and develop a

mathematical model f o r our assignment problem.

t h e network flow algori thm f o r t h e s o l u t i o n of t h e assignment problem

f o r given load condi t ions and t h e extension t o t h e case where t h e load

on only one processor is va r i ab le . We go on t o show t h a t , under

assumptions of l i n e a r i t y , t h e c o s t of each assignment under varying

load condi t ions on both processors corresponds t o a p l ane i n 3-space

and t h a t t h e optimal assignments form a convex polyhedron, such t h a t

each f a c e of t h e polyhedron corresponds t o a s p e c i f i c optimal

assignment

We f i r s t b r i e f l y review

The following i s a b r i e f expos i t i on of Stone's network flow model

A d i s t r i b u t e d program i s considered t o be a c o l l e c t i o n of [Stone,75].

modules (which may be subrout ines , corout ines , o r d a t a f i l e s) . A

module may, i n general , execute o r r e s i d e on e i t h e r of t h e two

processors.

e i t h e r processor.

i n t e rp rocesso r communication between them, should they not be

coresident. Costs may be measured i n t i m e , d o l l a r s o r o t h e r resource

u n i t s .

For each module w e are given t h e c o s t of executing i t on

For each p a i r of modules w e are given t h e c o s t of

The problem of f i n d i n g t h e assignment t h a t minimizes t h e n e t c o s t

is solved by drawing up an assignment graph i n which each cu t

corresponds t o an assignment and t h e weight of t h e c u t equals t h e c o s t

of t h e assignment. By applying a maxflow algorithm t o t h i s graph, w e

-5-

.
L

may ob ta in t h e minimum weight c u t and hence t h e minimum c o s t

assignment. This a lgor i thm gives u s the opt imal assignment f o r f ixed

values of loads on t h e two machines. Should t h e loads change, t h e

algori thm may be run aga in wi th s u i t a b l y modified va lues of t h e

runcosts . This is v i a b l e i f t he loads change a f t e r per iods of t i m e

t h a t are much longer than t h e t i m e requi red t o run t h e algorithm.

Since t h i s is o f t e n not t h e case, w e would l i k e t o have procedures t h a t

enable us t o compute a l l opt imal assigments p r i o r t o t h e execut ion of

t h e d i s t r i b u t e d program and t o have means f o r r ap id ly looking up t h e

optimal assignment a t a given load l eve l .

This problem has been solved by Stone [781 f o r t h e case where t h e

It has been shown t h a t f o r i nc reas ing load on only one machine va r i e s .

va lues of load on one machine, success ive opt imal assignments are

nested and hence t h e t o t a l number of assignments f o r a problem

involving n modules is no more than n+l.

so lve t h e problem f o r v a r i a b l e loads on both machines and may be

considered t o be a two-dimensional ex tens ion of t h e previous research.

The r e s u l t s presented below

L e t us l a b e l our two processors X and Y. We assume t h a t t h e load

l e v e l s on t h e two machines may be descr ibed by t h e real p o s i t i v e

numbers x and y respec t ive ly .

c a l l e d a load po in t and may l i e anywhere i n t h e p o s i t i v e XY plane.

A s p e c i f i c p a i r of load levels <x,y> is

The c o s t of running a module A on processor X is assumed t o vary

l i n e a r l y wi th t h e load on X.

denoted ax.

The constant of p ropor t iona l i t y is

Thus the c o s t of running module A on processor X is

- 6-

a x and, s i m i l a r l y , t h e c o s t f o r running A on Y is a y.
X Y

Note. For c l a r i t y of p re sen ta t ion , w e have assumed t h a t x and y

vary from 0 t o i n f i n i t y , thereby implying t h a t a t load ze ro each module

executes i n ze ro t i m e . This should create no d i f f i c u l t i e s i n t h e

implementation of t h i s work because loads w i l l i n p r a c t i c e be

constrained t o l i e between some xmin and xmX and some ylnin

and y,,.

processor x would be a x

Thus t h e s h o r t e s t t i m e i n which a module can execute on

>O. x min

The c o s t of communication between a p a i r of nodes, should they not

be co res iden t , I s assumed to be constant over a l l poss ib l e values of

load. This assumption is j u s t i f i e d by p r a c t i c a l experience wi th t h e

Brown Universi ty Graphics system [Michel & van Dam 771 where t h e

network flow algori thm w a s f i r s t implemented.

Consider t h e c o s t f i g u r e s shown i n Table I. Here w e have a

problem involving 5 modules.

processor are given as v a r i a b l e s i n x and y o The communication c o s t s

are f o r t h e ind ica t ed p a i r of modules, should they not be coresident .

These c o s t s may be i n s e r t e d i n t o t h e assignment graph of Fig. 1, as

described by Stone [77a]. Each c u t i n t h i s graph corresponds t o a n

assignment and vice-versa. The weight of each c u t equals t h e c o s t of

t h e corresponding assignment. For example, t h e t h i c k l i n e i n Fig. 1

shows a c u t t h a t a s s igns modules 1 & 2 t o processor X and t h e remaining

modules t o processor Y. The weight of t h i s c u t is Z=12x+16y+16, t h i s

being t h e sum of t h e weights on t h e c o n s t i t u e n t edges. I n general , a

The run c o s t s of each module on each

- 7-

Runcost On Runcost On

Module X Y

3
4
5

lox
2x

X
03

4x

1 1Y
3 7Y

5Y
7Y
4Y

I x=load on X y=load on Y I

Comnunication Costs

I Module 1 2 3 4 5 I
- 3 7 8 0

- 0 1 0
- 0 7

- 9

TABLE I. Runcosts and Comnunication Costs for
a 5 module problem.

.

- 8-

F i g . 1 Assignment Graph for the Problem shown i n Table I

-9-

c u t w i l l have weight z=Mx+Ny+C, where M(N) equals t he sum of run c o s t s

of modules ass igned t o X(Y). C equals t h e sum of communication c o s t s

between modules t h a t are not cores ident .

Since t h e r e is a one-to-one correspondence between c u t s and

assignments, w e may i d e n t i f y a c u t by l i s t i n g t h e set of nodes i t

as s igns t o processor X (t h e remaining nodes must necessa r i ly be

assigned t o processor Y). Thus t h e c u t i nd ica t ed i n Fig. 1 is denoted

{1,2}.

We w i l l c a l l t h e equat ion of t h e weight of a c u t (o r assignment)

j u s t t h e equat ion of a cu t (or assignment) f o r brev i ty . Thus t h e

equat ion of cu t {1,2) is z=12x+16y+16 and t h e equat ion of c u t {1,2,3,5)

(not marked i n t h e f i g u r e) is z=17x+7y+18. The c a r d i n a l i t y of a c u t o r

assignment is t h e c a r d i n a l i t y of the set of nodes i t a s s i g n s t o

processor X.

The assignment t h a t p u t s no modules on X is c a l l e d t h e Null

assignment, denoted (8, and has an equat ion of t h e form z=Ny. The

assignment t h a t p u t s a l l modules on X is c a l l e d t h e Universal

assignment, denoted U, and has an equat ion of t h e form z=Mx.

The genera l equat ion of a c u t z=Mx+Ny+C rep resen t s a p lane i n

3-space.

involving n modules and two processors , w e w i l l have 2n such

equat ions of planes.

(because execut ion and communication c o s t s are a l l non-negative) and,

Since t h e r e are 2n poss ib l e assignments for a problem

The cons tan ts M,N and C a r e a l l non-negative

-10-

as a r e s u l t , none of t h e s e planes can i n t e r s e c t with t h e XY plane

wi th in t h e p o s i t i v e quadrant.

with t h e Z-axis (s ince QO).

d i r e c t i o n s are a l s o nonnegative (s ince M , N L O) .

Every plane has a non-negative i n t e r c e p t

The s lopes of t h e s e planes i n t h e X and Y

We w i l l henceforth c a l l t h e p o s i t i v e quadrant of t h e XY plane t h e

- load p l a n e because each po in t on i t rep resen t s a load point .

given load po in t <x,y>, t h e lowermost of t h e 2n planes (t h e p l ane

with t h e smallest z-coordinate) is t h e one t h a t r ep resen t s t h e optimal

assignment.

and y i n t o t h e assignment graph and applying a network flow algori thm

t o it. As w e are i n t e r e s t e d only i n optimal acsignments, w e need

consider only t h e lowermost p l ane a t each <x,y>. A l i t t l e r e f l e c t i o n

w i l l reveal t h a t t h e s e lowermost planes i n t e r s e c t t o form a convex

polyhedron whose f a c e s correspond t o s p e c i f i c assignments. W e c a l l

t h i s t h e assignment polyhedron because each f a c e on t h i s polyhedron

r ep resen t s an assignment t h a t is optimal f o r a l l load po in t s <x,y> t h a t

l i e w i t h i n its p r o j e c t i o n on t h e XY plane.

assignment polyhedron.

A t a

This may be found by s u b s t i t u t i n g t h e s p e c i f i c values of x

Fig. 2 shows a t y p i c a l

It i s c l e a r l y not f e a s i b l e t o apply a network flow algori thm a t

each po in t on t h e load plane i n o rde r t o f i n d t h e polyhedron.

Subsequent s e c t i o n s of t h i s paper d i scuss how t h e polyhedron may be

found e f f i c i e n t l y and a l s o how i t may be used t o so lve our assignment

p r ob lem.

~

-11-

- 111. The Load Plane.

.
The assignment polyhedron descr ibed i n t h e previous s e c t i o n is

convex.

f u r t h e r t h a t t h e p r o j e c t i o n of t h e polyhedron onto t h e XY plane (t h e

load p lane) i s made up of convex polygons.

It fo l lows t h a t each ind iv idua l f a c e is a convex polygon and

The load p lane is thus d i s sec t ed i n t o convex polygonal regions

each of which, having been pro jec ted by a f ace , corresponds t o an

assignment t h a t is optimal f o r a l l load p o i n t s t h a t f a l l w i th in i t , and

i s l a b e l l e d accordingly.

t he polyhedron of Fig. 2, which is derived from a graph having e i g h t

module nodes.

Fig. 3 shows t h e load p lane corresponding t o

Note. The regions a t t h e extreme r i g h t and top of t h e load p l ane

a r e unbounded (see property 3.7 below).

The "nesting" theorem by Stone [78] states t h a t i n a d i s t r i b u t e d

processing s i t u a t i o n of t he s o r t being considered here , i f t h e load on

only machine Y increases the opt imal assignment w i l l change such t h a t

modules move away from machine Y onto machine X and only i n t h a t

d i r ec t ion . In o t h e r words, success ive opt imal assignments are nested.

This is c l e a r from Fig. 3. The v e r t i c a l dashed l i n e , parallel t o t h e Y

a x i s , r ep resen t s an i nc rease i n t h e load on processor Y, while t h e load

on processor X is maintained a t a constant value.

p o s i t i v e Y d i r e c t i o n , we encounter regions $4, { 8) , {7,8), {4,7,8),

{3,4,7,8), {3,4,6,7,8). The corresponding property holds i f w e keep

Travel ing i n t h e

-12-

Fig. 2 3-Dimensional view of an Assignment Polyhedron for a
problem involving 8 modules.
faces have not been 1 abel led.

For clarity, some o f the

- X
Fig. 3 The Load Plane Corresponding to the Polyhedron in Fig. 2

-13-

t h e load on Y constant and vary t h e load on X.

The load p lane has the fol lowing p rope r t i e s .

- 3.1 A h o r i z o n t a l o r v e r t i c a l l i n e through the load plane cannot cu t

through more than n+l reg ions (n is t h e number of modules).

This fo l lows from t h e nes t ing theorem.

- 3.2 Each poin t <x,y> on t h e load p lane f a l l s w i th in a region t h a t

r ep resen t s an assignment t h a t is equal t o o r contained in t h e

assignment a t <x-Ax,y+Ay> (Ax,Ay>O) (Fig. 4). This a l s o

fo l lows from t h e nes t ing theorem.

- 3.3 The l i n e s de f in ing t h e regions of t h e load p lane a l l have

p o s i t i v e s lope. This fol lows from property 3.2. A l i n e wi th

nega t ive s lope cannot separate two regions. For example, in

Fig.5, suppose <x1,y1>,<x3,y3> a r e contained in

one region and <x2,y2> i n another , and a l i n e of

nega t ive s l o p e separates t h e two regions. Then t h e assignment

a t <xl,yl> must be contained i n t h e assignment a t

<x2,y2>, which in t u r n must be contained in

<x3,y3>-

belong t o t h e same region.

This is poss ib l e only i f a l l t h r e e p o i n t s

(This property may a l s o be

e s t ab l i shed us ing arguments based on t h e convexity of t h e

polyhedron and t h e p r o p e r t i e s of t he equat ions of t h e planes.)

- 3.4 Any continuous o r piecewise continuous curve t h a t has nega t ive

-14-

Y

I X

Fig. 4. Property 3.2: The assignment a t <x,y> must
be equal to or contained ’ 7 every assignment
in the shaded region

Y

J X

Fig. 5 Property 3.3:The line separating two regions cannot
have negative slope.

-15-

.

.

s lope everywhere along its length must pass through

success ive ly nes ted regions (Fig. 6) . Clear ly , t h i s curve

cannot pas s through more than n+l regions.

- 3.5 I f we represent each region in t h e load p l ane by a node and

draw a d i r e c t e d edge between nodes r ep resen t ing ad jacent

reg ions i n t h e d i r e c t i o n of nes t ing , we ob ta in a p l ana r

l a t t i c e , as shown i n Fig. 7. Obviously, no pa th i n t h i s

l a t t i c e has l eng th g r e a t e r than n+l.

- 3.6 The X-axis can be touched only by t h e $ reg ion f o r a l l x>O.

This is because t h e equat ion f o r t h e $ reg ion is z=Ny which

is ze ro f o r a l l y=O and a l l o the r regions have z>O f o r y>O.

S imi la r ly , t h e Y-axis can be touched only by t h e U region, f o r

a l l y>O.

- 3.7 The regions f o r very l a r g e va lues of x and y are a l l unbounded.

These "fringe" regions inc lude t h e $ and U regions.

We may a t t h i s po in t be tempted t o conclude t h a t p r o p e r t i e s 3.1

and 3.2 are s u f f i c i e n t t o prove t h a t t h e t o t a l number of regions is no

more than n While t h e number of regions w i l l be proved t o be

O(n) i n t h e next s e c t i o n , t h i s does not necessa r i ly fol low from

t h e p r o p e r t i e s l i s t e d above.

having 2n regions t h a t have a l l t h e above p rope r t i e s .

2

2

It is p o s s i b l e t o cons t ruc t "load planes"

W e conclude t h i s s e c t i o n by observing t h a t , because t h e r e is a

-16-

Fig . 6 Property 3 . 4 : Any curve t h a t has negative
slope t h r o u g h o u t i t s l e n g t h c a n n o t pass t h r o u g h
more t h a n n + l regions.

F i g . 7 Property 3.5:The nesting re la t ionships between
regions form a planar l a t t i c e .

one-to-one correspondence between regions on the load plane and the

faces on the polyhedron, the properties l i s t e d above apply i n an

obvious fashion t o the polyhedron i t s e l f .

-18-

- I V . The M a x i m u m Number of D i s t i n c t Assignments.

I n t h i s s e c t i o n w e show t h a t t h e maximum number of regions on t h e

load plane (and hence t h e number of f aces on t h e polyhedron) i s

O(n). We introduce t h e concept of elemental polyhedra, t hese

being polyhedra whose i n t e r s e c t i o n i s t h e assignment polyhedron and

2

whose p r o p e r t i e s permit u s t o o b t a i n t h e bound on t h e number of regions

on t h e load plane.

L e t u s consider an assignment graph of t h e type shown i n Fig. 1,

and concen t r a t e our a t t e n t i o n on two c u t s A and B such t h a t A $ B and

B $ A .

B', where X'(Y') r ep resen t s t h e processor node X(Y) p l u s a l l nodes

assigned t o X(Y) by both A and B (Fig. 8) . Supernode A' r ep resen t s a l l

nodes assigned t o X by A and t o Y by B . Simi la r ly , B' r ep resen t s a l l

nodes assigned t o X by B and t o Y by A.

supernodes have weights equal t o t h e sum of t h e weights on t h e edges

between t h e cons t i t uen t nodes.

We can condense our graph i n t o fou r "Supernodes" X', Y', A' and

The edges between t h e

There are f o u r poss ib l e c u t s i n t h i s graph: t h e c u t s A and B

descr ibed above;

A n B t o X ; and t h e c u t U which r ep resen t s t h e assignment of nodes A u B

t o x.

t h e c u t 8 which r ep resen t s t h e assignment of nodes

The polyhedron generated by these f o u r c u t s is c a l l e d a n elemental

polyhedron.

i n a n assignment graph w i l l g ive rise t o an elemental polyhedron.

It should be clear t h a t each p a i r of c u t s A , B (A $ B , B $ A)

The

-19-

B A

Fig . 8 A condensed Graph

Y
I

I B

X
I ”/
1 I X

F i g . 9 The elemental load plane

-20-

assignment polyhedron corresponding t o a p a r t i c u l a r graph is made up of

t h e i n t e r s e c t i o n of a l l t h e elemental polyhedra generated by a l l p a i r s

of cuts .

c a l l e d an elemental load plane (Fig. 9).

The load plane corresponding t o a n elemental polyhedron is

Note. The elemental load plane shown i n Fig. 9 has t h e maximum

number of regions on i t (t h a t is, four) . This is not always t h e case

and some elemental load planes may have e i t h e r A or B or both missing.

I n t h e condensed graph, t h e equation of t h e assignment U (0) does not

have t h e form z=Mx (z=Ny). This is because each edge i s a condensation

of several edges from t h e o r i g i n a l graph and thus i t s weight is t h e sum

of s e v e r a l communication and execution cos t s . uor t h i s reason t h e

elemental load plane does not obey property 3.6--the X and Y axes may

be touched by two regions each.

The f a c e s corresponding t o A and B can have a t most one po in t i n

common (t h a t is, they can a t most touch a t a p o i n t) . They can never

sha re a common edge because A$B and B 4 A by d e f i n i t i o n .

t h a t t h e region U= A U B w i l l always be t o t h e l e f t of and above t h e

regions A and B .

r i g h t of and below A and B .

Thus w e see

S imi l a r ly t h e region 8 = A n B w i l l always be t o t h e

This may formally be s t a t e d as follows.

- 4 . 1 I n t h e elemental load plane every po in t i n t h e region A U B may

be connected by a s t r a i g h t l i n e t o some po in t i n region A (B)

such t h a t t h e s t r a i g h t l i n e does not pass through region B (A) .

The same a p p l i e s t o region A n B .

-21-

This excess ive ly formal way of s t a t i n g a n obvious f a c t is,

unfor tuna te ly , e s s e n t i a l t o t h e proof t h a t follows.

polyhedron is made up of t h e i n t e r s e c t i o n of e lemental polyhedra, it

fol lows t h a t t he abovementioned proper ty of t he elemental load p lane

must ca r ry over t o t h e load p lane corresponding t o t h e complete

assignment polyhedron. This permits u s t o prove t h e fol lowing theorem:

As t h e assignment

Theorem 4.2. The number of regions (f aces) on t h e load p lane

2 (assignment polyhedron) i s O(n 1.

Proof. The maximum number of regions of c a r d i n a l i t y 1 is n. For

t h e case n=6 t h i s is s h m i n Fig. 10, where t h e number of

f aces of c a r d i n a l i t y 2 is n-135. Any f u r t h e r regions of

c a r d i n a l i t y 2 must l i e i n t h e shaded regions so as not t o

v i o l a t e proper ty 3.2, but t h i s would cause proper ty 4.1 t o be

v io l a t ed . It fol lows t h a t t he re cannot be g r e a t e r than 0-1

regions of c a r d i n a l i t y 2. S imi la r ly t h e number of regions of

c a r d i n a l i t y 3 cannot exceed n-3, and so on. Thus the t o t a l

number of regions is n(n+1)/2 + 1. This proves t h e theorem.

Corol lary 4.3. The number of s t r a i g h t l i n e segments (edges) on t h e

2 load p lane (assignment polyhedron) i s O(n).

Proof. Follows from Theorem 4.2 and a r e s u l t by Euler[17521:

polyhedron i n 3-space t h e number of edges p l u s six cannot

exceed t h r e e times t h e number of faces .

On a

-22-

F i g . 10 The maximum number o f regions

There are several other properties of the assignment polyhedron

that can be established and shown t o reduce the t o t a l number of regions

further. However these properties do not reduce the polynomial bound

on the number of regions below n2 and are therefore ignored here.

-24-

- V. Cri t ica l Load Lines.

Given t h e load p l ane descr ibed above, we obviously need some means

f o r u t i l i z i n g i t i n our assignment problem. I n t h i s s e c t i o n w e p re sen t

a n e f f i c i e n t technique f o r f ind ing t h e assignment of a l l modules of t h e

program, given t h e load point .

L e t u s examine t h e load plane shown in Fig. 11, concentrat ing our

We observe t h a t t h e load p l ane may be divided a t t e n t i o n om module 3 .

i n t o two super regions such t h a t i f t h e load p o i n t is i n one region,

module 3 is assigned t o processor X and i f i n t h e o the r , i t is assigned

t o processor Y. I n Fig. 11, t h e super region comprising regions { 3 } ,

{ 2 , 3) , { 3 , 4) , { 2 , 3 , 4) , { 3 , 4 , 5) , etc. is t h e one f o r which module 3 is

assigned t o processor X. Clearly, one such d i v i s i o n of t h e load p l ane

e x i s t s f o r each module. This l eads t o t h e fol lowing concept.

Def in i t i on . The c r i t i ca l load l i n e f o r a module is a piecewise

continuous l i n e on t h e load plane such t h a t i f t h e load p o i n t f a l l s t o

t h e r i g h t of (o r below) t h i s l i n e , t h e optimal assignment w i l l a s s i g n

t h a t module t o processor Y. I f t h e load p o i n t f a l l s t o t h e l e f t of (o r

above) this l i n e , t h e module is assigned t o processor X by the optimal

assignment

The t h i c k l i n e shown i n Fig. 11 i s t h e c r i t i c a l load l i n e f o r

module 3 .

The following p r o p e r t i e s of t h e c r i t i c a l load l i n e may be

-25-

Fig. 11 Crit ical load line for module 3 .

-26-

enumerated

- 5.1 A c r i t i ca l load l i n e starts a t t h e o r i g i n and cont inues

i n d e f i n i t e l y .

- 5.2 Each segment of a c r i t i ca l load l i n e is a s t r a i g h t l i n e with

p o s i t i v e s lope.

property) .
(Negative s lopes would v i o l a t e t h e n e s t i n g

- 5.3 The y-coordinate of t h e c r i t i c a l load l i n e inc reases

monotonically w i t h t h e x-coordinate (follows from 5 . 2) .

2 - 5.4 Every c r i t i c a l load l i n e has O(n) segments. This fol lows

from c o r o l l a r y 4.3:

l i n e is s u r e l y less than t h e t o t a l number of segments on t h e

e n t i r e load plane.

t h e number of segments i n a c r i t i c a l load

- 5 . 5 A t least two c r i t i c a l load l i n e s p a s s through t h e p o i n t of

i n t e r s e c t i o n of 3 regions on t h e load plane (Fig. 1 2) .

po in t of i n t e r s e c t i o n i s , i n f a c t , a v e r t e x of t h e assignment

polyhedron .

This

- 5 . 6 The set of n c r i t i c a l load l i n e s , one f o r each module,

completely s p e c i f i e s t h e load plane. I f t h e z coordinate is

included a t each breakpoint of each c r i t i ca l load l i n e , then

t h e set of c r i t i ca l load l i n e s completely s p e c i f i e s t h e

assignment polyhedron.

-27-

.
C r i t i c a l load
l i n e f o r module 3

F i g 12. A t l e a s t two c r i t i c a l load l i n e s pass through
a p o i n t o f i n t e r s e c t i o n o f th ree regions.

-28-

The cr i t ica l load l i n e a s soc ia t ed wi th a p a r t i c u l a r module may be

used t D f i n d t h e optimal assignment f o r t h a t module f o r a given load

point. Suppose w e are given a c r i t i c a l load l i n e (Fig. 13) s p e c i f i e d

by t h e end p o i n t s of i t s segments. Then w e may determine whether a

load po in t <x1,y1> l ies above o r below t h e l i n e as follows.

1. Divide t h e load p l ane i n t o v e r t i c a l s t r i p s as determined by t h e

end p o i n t s of t h e segments of t h e c r i t i c a l load l i n e .

2. Determine which s t r i p t h e x coordinate of t h e po in t

<xl,yl> l ies in.

load l i n e inc reases monotonically with x (property 5.3), we may

use a binary search a t t h i s s tep.

Since t h e y coordinate of a c r i t i ca l

3. Determine whether t h e y coordinate l ies above o r below t h e

segment wi th in t h e s t r i p found i n s t e p 2.

2 The number of segments being O(n), t h e search i n s t e p 2 can

be done i n O(1og n) t i m e . Step 3 takes constant t i m e . The

determination of t h e optimal assignment f o r a l l n modules w i l l t hus

t ake O(n l o g n) t i m e .

-29-

y1

1 X

/
I

Fig. 13 Determining whether a point <xl,yl>lies above or below a
given critical load line.

-30-

- V I . An Algorithm f o r f i n d i n g t h e Assignment Polyhedron.

The algori thm descr ibed i n t h i s s e c t i o n w i l l accept t h e assignment

graph and t h e minimum and maximum values of loads x and y and w i l l f i n d

4 a l l c r i t i ca l load l i n e s i n O(n) appp l i ca t ions of t h e maxflow

algorithm.

W e assume, f o r purposes of exposi t ion, t h a t t h e following d a t a

s t r u c t u r e s , func t ions and procedures are a v a i l a b l e t o us.

Function MAXFLOW(x,y:real):nodeset;

i n t h e given assignment graph, apply a maxflow algori thm t o i t , o b t a i n

t h e mincut and r e t u r n t h e set of nodes assigned by t h i s mincut t o

processor X. Recall t h a t t h i s set of nodes uniquely s p e c i f i e s an

assignment and t h a t t h e equation of t h e p l ane corresponding t o t h i s

c u t s e t can be obtained from t h e assignment graph.

W i l l s u b s t i t u t e t h e va lues x and y

Data S t r u c t u r e PAIRLIST; w i l l maintain a l i s t of pairs of adjacent

f a c e s on t h e polyhedron t h a t have been examined s o f a r by t h e

algorithm.

Procedure INSERT-PAIR (A,B:nodeset); w i l l i n s e r t t h e p a i r of

assignments A,B i n t o PAIRLIST.

Function IN-PAIRLIST(A,B:nodeset):boolean;

already on PAIRLIST.

r e t u r n s t r u e i f A and B are

-31-

Function LOWEST-PLANE(A,B:nodeset):nodeset; This func t ion vi11 fh-3

t h e l i n e of i n t e r s e c t i o n of planes A and B and e s t a b l i s h t h e h%@est

po in t on t h i s l i n e t h a t is on t h e h u l l .

t h e plane t h a t i n t e r s e c t s wi th A and B a t t h i s po in t (t h a t being rhe

lowest p lane i n t e r s e c t i n g t h i s l i n e) . It f i r s t f i n d s t h e f u r t h e s t

po in t on t h e l i n e of i n t e r s e c t i o n of A and B t h a t is wi th in t b c region

def ined by xmX and ymX.

poin t . The po in t of i n t e r s e c t i o n of A,B and C is then considered t h e

new f u r t h e s t po in t and t h e process repeated u n t i l CIA o r C-B, whereupon

C is re turned as t h e lowest plane. Fig. 14 shows a view of t h i s

process i n terms of its p ro jec t ion on t h e load plane.

It w i l l r e t u r n the identity of

It then f i n d s t h e mincut C a t t h i s

Data S t r u c t u r e CRITICAL-LINES.

t h i s s t r u c t u r e . During t h e progress of t h e a lgor i thm po in t s t h a t l i e

on s p e c i f i c c r i t i c a l load l i n e s w i l l be i n s e r t e d i n t o t h e s t r u c t u r e

using t h e fol lowing procedure.

The n c r i t i ca l l i n e s w i l l be s t o r e d i n

Procedure INSERT-CRITICAL(A,B,C:nodeset);

are t h e 3 planes A,B,C which i n t e r s e c t t o form a v e r t e x of t h e h u l l .

The procedure f i n d s the x,y and z coord ina tes of t h e poin t of

i n t e r s e c t i o n and inserts t h i s information i n t o t h e da t a s t r u c t u r e

The input t o t h i s procedure

CRITICAL-LINES-

I n a d d i t i o n , w e have a s t a c k t h a t holds nodesets and t h e usua l

func t ions , push, pop and empty.

-32-

Ymax

Ymin i
max X

'mi n

Fig 14. Determining the lowest plane, C, that intersects with the
line of intersection of A and B.
algorithm applies the maxflow routine four times before
locating the point of intersection of A , B and C.

In this example the

-33-

The Algorithm

begin

while not empty do

begin

POP (A) ;

pop (B) ;

INSERT-PAIR(A,B);

C:=LOWEST-PLANE(A,B);

INSERT-CRIT(A,B,C);

i f not IN-PAIRLIST(A,C) then

begin

if not IN-PAIRLIST(B,C) then

begin

push (B) ;

push (C 1

end;

end ;

output critical lines ;

end

-34-

The algori thm looks a t each p a i r of ad jacent f aces on t h e

polyhedron once.

such p a i r .

equals t h e t o t a l number of edges, which is O(n).

LOWEST-PLANE w i l l r e s u l t i n a number of execut ions of t h e maxflow

algorithm.

t h e plane, which is O(n 1.

of t h e maxflow algori thm is O(n).

3 maxflow algori thm being O(n) [Karzanov 741, t h e o v e r a l l t i m e

complexity of t h e polyhedron f ind ing algori thm is O(n).

It executes t h e func t ion LOWEST-PLANE once f o r every

The number of ad jacent pairs of f aces on t h e polyhedron

2 Each c a l l t o

This cannot be g r e a t e r than t h e t o t a l number of regions on

2 Thus the t o t a l number of app l i ca t ions

4 The complexity of t he b e s t

7

V I I . Discussion and Conclusions.

..
i

We have presented a mathematical model f o r t h e problem of

computing a l l optimal assignments f o r t h e dua l processor assignment

problem under varying load condi t ions on both processors . We have

shown t h a t t h e s i t u a t i o n can be modelled by a convex polyhedron i n

3-space i n which each f a c e corresponds t o a s p e c i f i c opt imal

assignment.

d i s t i n c t optimal assignments w a s proved t o be O(n 1. A f a s t lookup

technique f o r f i n d i n g t h e optimal assignment i n O(n l o g n) time was

developed.

polyhedron i n O(n) time.

The t o t a l number of f a c e s and hence t h e t o t a l number of

2

The last s e c t i o n presented a n a lgo r i thm t o f i n d t h e

7

The v i a b i l i t y of using network flow algorithms f o r f i n d i n g optimal

assignments i n a p r a c t i c a l environment has been e s t a b l i s h e d by t h e

Brown Universi ty Graphics System [Michel 61 van Dam 761, [van Dam e t al.

741.

both been used t o advantage i n t h a t system.

t h i s paper extends previous r e s u l t s t o t h e case where varying loads on

both machines can be taken i n t o account and is t hus app l i cab le t o more

gene ra l s i t u a t i o n s .

Stone's b a s i c assignment a lgori thm and t h e n e s t i n g property have

The algori thm presented i n

The algori thm f o r f i n d i n g t h e polyhedron, which was described i n

t h e previous s e c t i o n , has been implemented and t e s t e d on about 100

random graphs with 10 t o 20 nodes each.

and t h e load plane of Fig. 3 were both p l o t t e d d i r e c t l y by t h i s

algorithm.

The polyhedron shown i n Fig. 2

-36-

Among t h e open problems generated by t h i s research are t h e

following.

1. H o w may t h i s approach be extended t o t h r e e processors?

algori thm f o r t h e b a s i c 3-processor assignment problem has been

developed by Stone [77bl. Can t h e nes t ing p r o p e r t i e s descr ibed

i n t h i s paper be extended i n some way t o t h e t h r e e processor

case?

An

2. We have assumed t h a t as t h e load changes, r e l o c a t i o n s may be

c a r r i e d ou t without penalty. What i f r e l o c a t i o n s t a k e a n

apprec iab le amount of time? Bokhari [7 9] describes a n

extension of t h e network flow algori thm t h a t t akes reassignment

c o s t s i n t o account. Can t h i s be extended t o t h e v a r i a b l e load

case?

V I I I . Acknowledgements

During t h e course of t h i s researc.., i t has been my p leasu re t o

i n t e r a c t f r u i t f u l l y wi th numerous col leagues and mentors. I a m

e s p e c i a l l y g r a t e f u l t o P ro fes so r Harold Stone f o r h i s encouragement of

t h i s research and f o r numerous s t i m u l a t i n g d i scuss ions on va r ious

a spec t s of t h e problem.

developing counterexamples t o some e a r l y conjectures about t h e

I a m a l s o g r a t e f u l t o Azmi Ja fa rey f o r

-37-

polyhedron.

J. Gopal Danaraj and Tom Anderson have been very helpful t o me i n t h i s

res ear ch .

Discussions with Drs. Milton E. Rose, Robert G . Voigt,

.

-38-

I X . References -

Bokhari 1791 S. H. Bokhari, "Dual Processor Scheduling with Dynamic

Reassignment," IEEE Trans. Software Enq., July 1979, to

appear

Euler [17521 Leonhard Euler, "Elementa Doctrinae Solidorum," Novi

commentarii academiae scientiarium Petropolitanae, 4

(1752/3), pp. 109-140. Available in Leonhardi Euleri Opera

Omina, Series 1, vol. 26: Commentationes Geometricae, pp.

71-93, Lausanne, 1953.

Karzanov [74] A. V. Karzanov,"Detedning the Maximal Flow in a

Network by the Method of Preflows," Soviet Math.

vol. 15, no. 2, pp. 434-437, 1974.

Doklady,

Michel & van Dam [76] J. Michel and A. van Dam, "Experience with

Distributed Processing on a Host/Satellite Graphics System,"

Proceeings of SIGGRAPH '76, available as Computer Graphics

(SIGGRAPH newsletter), vol. 10, no. 2, 1976.

Michel & van Dam 1771 J. Michel & A. van Dam, personal communication.

Rao et al. [79] G. S. Rao, H. S. Stone and T. C. Hu,"Assignment of

Tasks in a Distributed Processor System with Limited Memory,"

IEEE Trans. Computers, vol. C-28, no. 4, pp. 291-299,

April 1979.

-39-

I

Stone [77a] H. S. Stone, %Multiprocessor Scheduling with the Aid of

Software Eng., vol. Network Flow Algorithms," IEEE Trans.

SE-3, no. 1, pp. 85-93, Jan. 1977.

Stone [77b] H. S. Stone, "Program Assignment i n Three-Processor

Systems and Tr i cu t se t P a r t i t i o n i n g of Graphs," Tech.

no. ECE-(3-77-7, Dept. of Elec & Computer Eng., Univ. of

Massachusetts, Amherst.

Rep.

Stone [78] H. S. Stone, " C r i t i c a l Load Fac tors in Dis t r ibu ted

Systems," IEEE Trans. Software Eng., v o l SE-4, no. 3, pp.

254-258, May 1978.

van Dam e t a l . (741 A. van Dam, G. Stab le r , and R. Harrington,

" In t e l l i gen t Satel l i tes f o r I n t e r a c t i v e Graphics," Proc.

the IEEE, v01. 62, no. 4, pp. 83-92, Apri l 1974.

of

